

Model UCL-HP100

Coaxial Fixed Attenuator

100 Watts DC-4GHz

Model Number	Frequency	Attenuation Value & Accuracy (dB)				Max
	Range (GHz)	10	20	30	40-50	VSWR
UCL-HP100-1	DC-1	±0.4	±0.4	±0.4	±0.4	1.10
UCL-HP100-2	DC-2	±0.5	±0.5	±0.5	±0.5	1.20
UCL-HP100-3	DC-3	±0.6	±0.6	±0.6	±0.6	1.30
UCL-HP100-4	DC-4	±0.75	±0.7	±0.75	±0.75	1.35

Coaxial fixed attenuators are used in absorbing energy of transmission line, expanding power range and controlling power level, they are also used in accurately measuring power or spectrum of RF microwave transmitters accompany with small power meter, comprehensive tester or spectrum analyzer.

UCL-HP100 serial coaxial fixed attenuators' average power 1W-10KW, frequency range DC-18GHz and feature wide frequency band, low VSWR, flatness attenuation value, excellent capacity in anti-pulse and anti-burnout.

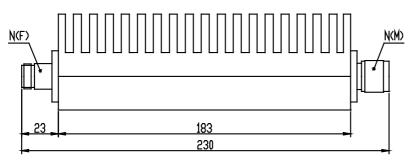
NOMINAL IMPEDANCE: 50Ω

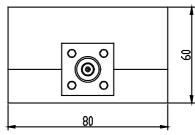
AVERAGE POWER: 100W average to 25℃ ambient temperature, derated linearly to 10W @ 125℃.

PEAK POWER: 10KW (5µs pulse width with 1% duty cycle)

3rd ORDER INTERMODULATION(Optional):

Reflected Levels(IM3) <-100dBc with two input signals @935MHz and 960MHz with average carrier power levels of +43dBm each.


TEMPERATURE RANGE: -55℃ ~+125℃


CONNECTOR TYPE: N,7/16

WEIGHT: 1.8Kg

PHYSICAL DIMENSIONS: 230×80×60mm

Outline Drawings

- * Dimensions are given in mm and tolerance $\pm 2\%$.
- ** VSWR varies according to frequency and attenuation value.
- *** VSWR and dimensions refer to connector type N.

Web: www.ucl-microwave.com

Email: sales@ucl-microwave.com